1. Home / Podcast / Fast Talk podcast, ep. 37: Nutrition — sugar, wheat, paleo, and performance

Fast Talk podcast, ep. 37: Nutrition — sugar, wheat, paleo, and performance

The VeloNews Fast Talk podcast is your source for the best advice and most interesting insight on what it takes to become a better cyclist. Listen in as VeloNews managing editor Chris Case and columnist Trevor Connor discuss a range of topics, including training, physiology, technology, and more.

In episode 37, we’re taking on the always-controversial subject of nutrition. Why is it so controversial? First, it’s very personal: Many people, trained or untrained, have strong opinions on the subject, and a lot of heated debate revolves around what is healthy and what is best for performance. We’ve had a few prominent guests on Fast Talk previously, and they’ve given their opinions on the subject. But thus far we have strayed away from revealing our thoughts — until now.

In this podcast, we’ll discuss what we think is healthy and what isn’t. We’ll talk about what foods to eat, we’ll take on the question of wheat, nutrient density, and sugar. Unlike other episodes, in this show Coach Trevor Connor will not only be the co-host, he’ll also be the guest of honor. His research in graduate school focused on many of these topics, and what he’ll share are his educated opinions.

Fast Talk is available on all your favorite podcast services, including iTunes, Stitcher, Google Play, and Soundcloud. If you enjoy the podcast, please consider taking a moment to rate and comment on iTunes after listening. Also, check out the VeloNews Cycling Podcast, our weekly discussion of the sport’s hottest topics, trends, and controversies.

References

In this article, Connor explains how wheat interrupts the proper functioning of the gut and causes inappropriate inflammation:

• Ahmed, T., Sumazaki, R., Nagai, Y., Shibasaki, M., & Takita, H. (1997). Immune response to food antigens: kinetics of food-specific antibodies in the normal population. Acta Paediatr Jpn, 39(3), 322-328.
• Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., et al. (2000). Inflammation and Alzheimer’s disease. [Review]. Neurobiology of Aging, 21(3), 383-421. doi: 10.1016/s0197-4580(00)00124-x
• Alaedini, A., Okamoto, H., Briani, C., Wollenberg, K., Shill, H. A., Bushara, K. O., et al. (2007). Immune cross-reactivity in celiac disease: anti-gliadin antibodies bind to neuronal synapsin I. J Immunol, 178(10), 6590-6595.
• Alcami, A. (2003). Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol, 3(1), 36-50. doi: 10.1038/nri980
• Amara, A., & Mercer, J. (2015). Viral apoptotic mimicry. Nat Rev Microbiol. doi: 10.1038/nrmicro3469
• Antvorskov, J. C., Fundova, P., Buschard, K., & Funda, D. P. (2013). Dietary gluten alters the balance of pro-inflammatory and anti-inflammatory cytokines in T cells of BALB/c mice. Immunology, 138(1), 23-33. doi: 10.1111/imm.12007
• Arrieta, M.-C., & Finlay, B. B. (2012). The commensal microbiota drives immune homeostasis. [Mini Review]. Frontiers in Immunology, 3. doi: 10.3389/fimmu.2012.00033
• Arrieta, M. C., Madsen, K., Doyle, J., & Meddings, J. (2009). Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut, 58(1), 41-48. doi: 10.1136/gut.2008.150888
• Battaglia, M., Gianfrani, C., Gregori, S., & Roncarolo, M. G. (2004). IL-10-producing T regulatory type 1 cells and oral tolerance. Ann N Y Acad Sci, 1029, 142-153. doi: 10.1196/annals.1309.031
• Bernardo, D., Garrote, J. A., Fernandez-Salazar, L., Riestra, S., & Arranz, E. (2007). Is gliadin really safe for non-coeliac individuals? Production of interleukin 15 in biopsy culture from non-coeliac individuals challenged with gliadin peptides. [Letter]. Gut, 56(6), 889-890. doi: 10.1136/gut.2006.118265
• Biesiekierski, J. R., Newnham, E. D., Irving, P. M., Barrett, J. S., Haines, M., Doecke, J. D., et al. (2011). Gluten causes gastrointestinal symptoms in subjects without celiac disease: a double-blind randomized placebo-controlled trial. Am J Gastroenterol, 106(3), 508-514; quiz 515. doi: 10.1038/ajg.2010.487
• Biesiekierski, J. R., Peters, S. L., Newnham, E. D., Rosella, O., Muir, J. G., & Gibson, P. R. (2013). No Effects of Gluten in Patients With Self-Reported Non-Celiac Gluten Sensitivity After Dietary Reduction of Fermentable, Poorly Absorbed, Short-Chain Carbohydrates. Gastroenterology, 145(2), 320-+. doi: 10.1053/j.gastro.2013.04.051
• Bogorad, L. (2008). Evolution of early eukaryotic cells: genomes, proteomes, and compartments. [Review]. Photosynthesis Research, 95(1), 11-21. doi: 10.1007/s11120-007-9236-3
• Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., et al. (1992). DEfinitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. the accp/sccm consensus conference committee. american college of chest physicians/society of critical care medicine. Chest, 101(6), 1644-1655. doi: 10.1378/chest.101.6.1644
• Bosi, E., Molteni, L., Radaelli, M. G., Folini, L., Fermo, I., Bazzigaluppi, E., et al. (2006). Increased intestinal permeability precedes clinical onset of type 1 diabetes. Diabetologia, 49(12), 2824-2827. doi: 10.1007/s00125-006-0465-3
• Brand, S. (2009). Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut, 58(8), 1152-1167. doi: 10.1136/gut.2008.163667
• Buer, J., & Balling, R. (2003). Mice, microbes and models of infection. Nat Rev Genet, 4(3), 195-205. doi: 10.1038/nrg1019
• Burcelin, R., Garidou, L., & Pomie, C. (2012). Immuno-microbiota cross and talk: the new paradigm of metabolic diseases. Semin Immunol, 24(1), 67-74. doi: 10.1016/j.smim.2011.11.011
• Cao, A. T., Yao, S., Gong, B., Elson, C. O., & Cong, Y. (2012). Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J Immunol, 189(9), 4666-4673. doi: 10.4049/jimmunol.1200955
• Carroccio, A., Mansueto, P., Iacono, G., Soresi, M., D’Alcamo, A., Cavataio, F., et al. (2012). Non-Celiac Wheat Sensitivity Diagnosed by Double-Blind Placebo-Controlled Challenge: Exploring a New Clinical Entity. American Journal of Gastroenterology, 107(12), 1898-1906. doi: 10.1038/ajg.2012.236
• Castellanos-Rubio, A., Santin, I., Irastorza, I., Castano, L., Carlos Vitoria, J., & Ramon Bilbao, J. (2009). TH17 (and TH1) signatures of intestinal biopsies of CD patients in response to gliadin. Autoimmunity, 42(1), 69-73. doi: 10.1080/08916930802350789
• Cereijido, M., Contreras, R. G., Flores-Benitez, D., Flores-Maldonado, C., Larre, I., Ruiz, A., et al. (2007). New diseases derived or associated with the tight junction. Arch Med Res, 38(5), 465-478. doi: 10.1016/j.arcmed.2007.02.003
• Chladkova, B., Kamanova, J., Palova-Jelinkova, L., Cinova, J., Sebo, P., & Tuckova, L. (2011). Gliadin fragments promote migration of dendritic cells. J Cell Mol Med, 15(4), 938-948. doi: 10.1111/j.1582-4934.2010.01066.x
• Clemente, M. G., De Virgiliis, S., Kang, J. S., Macatagney, R., Musu, M. P., Di Pierro, M. R., et al. (2003). Early effects of gliadin on enterocyte intracellular signalling involved in intestinal barrier function. Gut, 52(2), 218-223.
• Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. [Review]. Nature, 420(6917), 860-867. doi: 10.1038/nature01322
• D’Souza, D. R., Wei, J., Shao, Q., Hebert, M. D., Subramony, S. H., & Vig, P. J. S. (2006). Tissue transglutaminase crosslinks ataxin-1: Possible role in SCA1 pathogenesis. [Article]. Neuroscience Letters, 409(1), 5-9. doi: 10.1016/j.neulet.2006.08.003
• Dalla Pellegrina, C., Perbellini, O., Scupoli, M. T., Tomelleri, C., Zanetti, C., Zoccatelli, G., et al. (2009). Effects of wheat germ agglutinin on human gastrointestinal epithelium: insights from an experimental model of immune/epithelial cell interaction. Toxicol Appl Pharmacol, 237(2), 146-153. doi: 10.1016/j.taap.2009.03.012
• de Aizpurua, H. J., & Russell-Jones, G. J. (1988). Oral vaccination. Identification of classes of proteins that provoke an immune response upon oral feeding. J Exp Med, 167(2), 440-451.
• de Cristofaro, T., Affaitati, A., Cariello, L., Avvedimento, E. V., & Varrone, S. (1999). The length of polyglutamine tract, its level of expression, the rate of degradation, and the transglutaminase activity influence the formation of intracellular aggregates. [Article]. Biochemical and Biophysical Research Communications, 260(1), 150-158.
• De Magistris, L., Secondulfo, M., Iafusco, D., Carbone, A. G., Urio, A., Pontoni, G., et al. (1996). Altered mannitol absorption in diabetic children. Ital J Gastroenterol, 28(6), 367.
• De Palma, G., Nadal, I., Collado, M. C., & Sanz, Y. (2009). Effects of a gluten-free diet on gut microbiota and immune function in healthy adult human subjects. Br J Nutr, 102(8), 1154-1160. doi: 10.1017/S0007114509371767
• De Palma, G., Nadal, I., Medina, M., Donat, E., Ribes-Koninckx, C., Calabuig, M., et al. (2010). Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol, 10, 63. doi: 10.1186/1471-2180-10-63
• De Vivo, G., & Gentile, V. (2008). Transglutaminase-Catalyzed Post-Translational Modifications of Proteins in the Nervous System and their Possible Involvement in Neurodegenerative Diseases. [Article]. Cns & Neurological Disorders-Drug Targets, 7(4), 370-375.
• Devitt, A., Moffatt, O. D., Raykundalia, C., Capra, J. D., Simmons, D. L., & Gregory, C. D. (1998). Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature, 392(6675), 505-509. doi: 10.1038/33169
• Di Pierro, M., Lu, R., Uzzau, S., Wang, W., Margaretten, K., Pazzani, C., et al. (2001). Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J Biol Chem, 276(22), 19160-19165. doi: 10.1074/jbc.M009674200
• Di Sabatino, A., Volta, U., Salvatore, C., Biancheri, P., Caio, G., De Giorgio, R., et al. (2015). Small Amounts of Gluten in Subjects With Suspected Nonceliac Gluten Sensitivity: A Randomized, Double-Blind, Placebo-Controlled, Cross-Over Trial. Clinical Gastroenterology and Hepatology, 13(9), 1604-+. doi: 10.1016/j.cgh.2015.01.029
• Dieterich, W., Ehnis, T., Bauer, M., Donner, P., Volta, U., Riecken, E. O., et al. (1997). Identification of tissue transglutaminase as the autoantigen of celiac disease. [Article]. Nature Medicine, 3(7), 797-801. doi: 10.1038/nm0797-797
• Drago, S., El Asmar, R., Di Pierro, M., Grazia Clemente, M., Tripathi, A., Sapone, A., et al. (2006). Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol, 41(4), 408-419. doi: 10.1080/00365520500235334
• Du, C., Liu, C., Kang, J., Zhao, G., Ye, Z., Huang, S., et al. (2009). MicroRNA miR-326 regulates TH-17 differentiation and is associated with the pathogenesis of multiple sclerosis. Nat Immunol, 10(12), 1252-1259. doi: 10.1038/ni.1798
• du Pre, M. F., & Samsom, J. N. (2011). Adaptive T-cell responses regulating oral tolerance to protein antigen. Allergy, 66(4), 478-490. doi: 10.1111/j.1398-9995.2010.02519.x
• Dzhambazov, B., Lindh, I., Engstrom, A., & Holmdahl, R. (2009). Tissue transglutaminase enhances collagen type II-induced arthritis and modifies the immunodominant T-cell epitope CII260-270. European Journal of Immunology, 39(9), 2412-2423. doi: DOI 10.1002/eji.200939438
• Edwards, C. J. (2008). Commensal gut bacteria and the etiopathogenesis of rheumatoid arthritis. J Rheumatol, 35(8), 1477-14797.
• Ejsing-Duun, M., Josephsen, J., Aasted, B., Buschard, K., & Hansen, A. K. (2008). Dietary gluten reduces the number of intestinal regulatory T cells in mice. Scand J Immunol, 67(6), 553-559. doi: 10.1111/j.1365-3083.2008.02104.x
• El Asmar, R., Panigrahi, P., Bamford, P., Berti, I., Not, T., Coppa, G. V., et al. (2002). Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology, 123(5), 1607-1615.
• Elli, L., Roncoroni, L., & Bardella, M. T. (2015). Non-celiac gluten sensitivity: Time for sifting the grain. World J Gastroenterol, 21(27), 8221-8226. doi: 10.3748/wjg.v21.i27.8221
• Elson, C. O., Cong, Y., Weaver, C. T., Schoeb, T. R., McClanahan, T. K., Fick, R. B., et al. (2007). Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology, 132(7), 2359-2370. doi: 10.1053/j.gastro.2007.03.104
• Emami, M. H., Taheri, H., Kohestani, S., Chitsaz, A., Etemadifar, M., Karimi, S., et al. (2008). How Frequent is Celiac Disease among Epileptic Patients? [Article]. Journal of Gastrointestinal and Liver Diseases, 17(4), 379-382.
• Ertl, B., Heigl, F., Wirth, M., & Gabor, F. (2000). Lectin-mediated bioadhesion: preparation, stability and caco-2 binding of wheat germ agglutinin-functionalized Poly(D,L-lactic-co-glycolic acid)-microspheres. J Drug Target, 8(3), 173-184. doi: 10.3109/10611860008996863
• Evans, H. G., Gullick, N. J., Kelly, S., Pitzalis, C., Lord, G. M., Kirkham, B. W., et al. (2009). In vivo activated monocytes from the site of inflammation in humans specifically promote Th17 responses. Proc Natl Acad Sci U S A, 106(15), 6232-6237. doi: 10.1073/pnas.0808144106
• Falth-Magnusson, K., & Magnusson, K. E. (1995). Elevated levels of serum antibodies to the lectin wheat germ agglutinin in celiac children lend support to the gluten-lectin theory of celiac disease. Pediatr Allergy Immunol, 6(2), 98-102.
• Farmer, J. D. (2005). Into the cool: Energy flow, thermodynamics and life. [Book Review]. Nature, 436(7051), 627-628. doi: 10.1038/436628a
• Fasano, A. (2001). Intestinal zonulin: open sesame! Gut, 49(2), 159-162.
• Fasano, A. (2008). Physiological, Pathological, and Therapeutic Implications of Zonulin-Mediated Intestinal Barrier Modulation Living Life on the Edge of the Wall. [Article]. American Journal of Pathology, 173(5), 1243-1252. doi: 10.2353/ajpath.2008.080192
• Fasano, A. (2009). Surprises from celiac disease. Sci Am, 301(2), 54-61.
• Fasano, A. (2011). Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev, 91(1), 151-175. doi: 10.1152/physrev.00003.2008
• Fasano, A., Fiorentini, C., Donelli, G., Uzzau, S., Kaper, J. B., Margaretten, K., et al. (1995). Zonula occludens toxin modulates tight junctions through protein kinase C-dependent actin reorganization, in vitro. J Clin Invest, 96(2), 710-720. doi: 10.1172/JCI118114
• Ferch, C. C., & Chey, W. D. (2012). Irritable Bowel Syndrome and Gluten Sensitivity Without Celiac Disease: Separating the Wheat From the Chaff. Gastroenterology, 142(3), 664-666. doi: http://dx.doi.org/10.1053/j.gastro.2012.01.020
• Fujino, S., Andoh, A., Bamba, S., Ogawa, A., Hata, K., Araki, Y., et al. (2003). Increased expression of interleukin 17 in inflammatory bowel disease. Gut, 52(1), 65-70.
• Funda, D. P., Kaas, A., Tlaskalova-Hogenova, H., & Buschard, K. (2008). Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes. [Article]. Diabetes-Metabolism Research and Reviews, 24(1), 59-63. doi: 10.1002/dmrr.748
• Gabaldon, T., & Huynen, M. A. (2007). From endosymbiont to host-controlled organelle: The hijacking of mitochondrial protein synthesis and metabolism. [Article]. Plos Computational Biology, 3(11), 2209-2218. doi: e219
• 10.1371/journal.pcbi.0030219
• Gabor, F., Stangl, M., & Wirth, M. (1998). Lectin-mediated bioadhesion: binding characteristics of plant lectins on the enterocyte-like cell lines Caco-2, HT-29 and HCT-8. J Control Release, 55(2-3), 131-142.
• Gaesser, G. A., & Angadi, S. S. (2012). Gluten-Free Diet: Imprudent Dietary Advice for the General Population? Journal of the Academy of Nutrition and Dietetics, 112(9), 1330-1333. doi: http://dx.doi.org/10.1016/j.jand.2012.06.009
• Ganeshan, K., Neilsen, C. V., Hadsaitong, A., Schleimer, R. P., Luo, X. R., & Bryce, P. J. (2009). Impairing oral tolerance promotes allergy and anaphylaxis: A new murine food allergy model. [Article]. Journal of Allergy and Clinical Immunology, 123(1), 231-238. doi: 10.1016/j.jaci.2008.10.011
• Grivennikov, S. I., Greten, F. R., & Karin, M. (2010). Immunity, Inflammation, and Cancer. [Review]. Cell, 140(6), 883-899. doi: 10.1016/j.cell.2010.01.025
• Hadjivassiliou, M., Grunewald, R., Sharrack, B., Sanders, D., Lobo, A., Williamson, C., et al. (2003). Gluten ataxia in perspective: epidemiology, genetic susceptibility and clinical characteristics. [Article]. Brain, 126, 685-691. doi: 10.1093/brain/awg050
• Hadjivassiliou, M., Grunewald, R. A., Kandler, R. H., Chattopadhyay, A. K., Jarratt, J. A., Sanders, D. S., et al. (2006). Neuropathy associated with gluten sensitivity. [Article]. Journal of Neurology Neurosurgery and Psychiatry, 77(11), 1262-1266. doi: 10.1136/jnnp.2006.093534
• Hadjivassiliou, M., Maki, M., Sanders, D. S., Williamson, C. A., Grunewald, R. A., Woodroofe, N. M., et al. (2006). Autoantibody targeting of brain and intestinal transglutaminase in gluten ataxia. Neurology, 66(3), 373-377. doi: 10.1212/01.wnl.0000196480.55601.3a
• Hadjivassiliou, M., Williamson, C. A., & Woodroofe, N. (2004). The immunology of gluten sensitivity: beyond the gut. [Article]. Trends in Immunology, 25(11), 578-582. doi: 10.1016/j.it.2004.08.011
• Harris, K. M., Fasano, A., & Mann, D. L. (2010). Monocytes differentiated with IL-15 support Th17 and Th1 responses to wheat gliadin: implications for celiac disease. Clin Immunol, 135(3), 430-439. doi: 10.1016/j.clim.2010.01.003
• Hengeveld, R., & Fedonkin, M. A. (2004). Causes and consequences of eukaryotization through mutualistic endosymbiosis and compartmentalization. [Review]. Acta Biotheoretica, 52(2), 105-154.
• Hijazi, Z., Molla, A. M., Al-Habashi, H., Muawad, W. M., Molla, A. M., & Sharma, P. N. (2004). Intestinal permeability is increased in bronchial asthma. Arch Dis Child, 89(3), 227-229.
• Hirota, K., Yoshitomi, H., Hashimoto, M., Maeda, S., Teradaira, S., Sugimoto, N., et al. (2007). Preferential recruitment of CCR6-expressing Th17 cells to inflamed joints via CCL20 in rheumatoid arthritis and its animal model. J Exp Med, 204(12), 2803-2812. doi: 10.1084/jem.20071397
• Hoffner, G., & Djian, P. (2005). Transglutaminase and diseases of the central nervous system. [Review]. Frontiers in Bioscience, 10, 3078-3092.
• Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. [Article]. Nature, 444(7121), 860-867. doi: 10.1038/nature05485
• Ihara, M., Makino, F., Sawada, H., Mezaki, T., Mizutani, K., Nakase, H., et al. (2006). Gluten sensitivity in Japanese patients with adult-onset cerebellar ataxia. [Article]. Internal Medicine, 45(3), 135-140. doi: 10.2169/internalmedicine.45.1351
• Ivanov, II, Atarashi, K., Manel, N., Brodie, E. L., Shima, T., Karaoz, U., et al. (2009). Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell, 139(3), 485-498. doi: 10.1016/j.cell.2009.09.033
• Jekely, G. (2007). Origin of eukaryotic endomembranes: A critical evaluation of different model scenarios Eukaryotic Membranes and Cytoskeleton: Origins and Evolution (Vol. 607, pp. 38-51). Berlin: Springer-Verlag Berlin.
• Jelinkova, L., Tuckova, L., Cinova, J., Flegelova, Z., & Tlaskalova-Hogenova, H. (2004). Gliadin stimulates human monocytes to production of IL-8 and TNF-alpha through a mechanism involving NF-kappaB. FEBS Lett, 571(1-3), 81-85. doi: 10.1016/j.febslet.2004.06.057
• Junker, Y., Zeissig, S., Kim, S. J., Barisani, D., Wieser, H., Leffler, D. A., et al. (2012). Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med, 209(13), 2395-2408. doi: 10.1084/jem.20102660
• Kahlem, P., Terre, C., Green, H., & Djian, P. (1996). Peptides containing glutamine repeats as substrates for transglutaminase-catalyzed cross-linking: Relevance to diseases of the nervous system. [Article]. Proceedings of the National Academy of Sciences of the United States of America, 93(25), 14580-14585.
• Kalaydjian, A. E., Eaton, W., Cascella, N., & Fasano, A. (2006). The gluten connection: the association between schizophrenia and celiac disease. Acta Psychiatr Scand, 113(2), 82-90. doi: 10.1111/j.1600-0447.2005.00687.x
• Kamada, N., Hisamatsu, T., Okamoto, S., Chinen, H., Kobayashi, T., Sato, T., et al. (2008). Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J Clin Invest, 118(6), 2269-2280. doi: 10.1172/JCI34610
• Kamada, N., Seo, S. U., Chen, G. Y., & Nunez, G. (2013). Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol, 13(5), 321-335. doi: 10.1038/nri3430
• Kawai, T., Takeuchi, O., Fujita, T., Inoue, J., Muhlradt, P. F., Sato, S., et al. (2001). Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol, 167(10), 5887-5894.
• Kebir, H., Kreymborg, K., Ifergan, I., Dodelet-Devillers, A., Cayrol, R., Bernard, M., et al. (2007). Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med, 13(10), 1173-1175. doi: 10.1038/nm1651
• Kleidon, A. (2009). Nonequilibrium thermodynamics and maximum entropy production in the Earth system: applications and implications. Naturwissenschaften, 96(6), 653-677. doi: 10.1007/s00114-009-0509-x
• Kloppel, S., Henley, S. M., Hobbs, N. Z., Wolf, R. C., Kassubek, J., Tabrizi, S. J., et al. (2009). MAGNETIC RESONANCE IMAGING OF HUNTINGTON’S DISEASE: PREPARING FOR CLINICAL TRIALS. [Review]. Neuroscience, 164(1), 205-219. doi: 10.1016/j.neuroscience.2009.01.045
• Knutson, T. W., Bengtsson, U., Dannaeus, A., Ahlstedt, S., & Knutson, L. (1996). Effects of luminal antigen on intestinal albumin and hyaluronan permeability and ion transport in atopic patients. J Allergy Clin Immunol, 97(6), 1225-1232.
• Koj, A. (1996). Initiation of acute phase response and synthesis of cytokines. Biochim Biophys Acta, 1317(2), 84-94.
• Kostianovsky, M. (2000). Evolutionary origin of eukaryotic cells. [Review]. Ultrastructural Pathology, 24(2), 59-66.
• Krabbe, K. S., Pedersen, M., & Bruunsgaard, H. (2004). Inflammatory mediators in the elderly. Exp Gerontol, 39(5), 687-699. doi: 10.1016/j.exger.2004.01.009
• Kumar, P., & Subramaniyam, G. (2015). Molecular underpinnings of Th17 immune-regulation and their implications in autoimmune diabetes. Cytokine, 71(2), 366-376. doi: 10.1016/j.cyto.2014.10.010
• Lai, C. H., Chang, N. W., Lin, C. F., Lin, C. D., Lin, Y. J., Wan, L., et al. (2010). Proteomics-based identification of haptoglobin as a novel plasma biomarker in oral squamous cell carcinoma. Clin Chim Acta, 411(13-14), 984-991. doi: 10.1016/j.cca.2010.03.028
• Lammers, K. M., Lu, R., Brownley, J., Lu, B., Gerard, C., Thomas, K., et al. (2008). Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology, 135(1), 194-204 e193. doi: 10.1053/j.gastro.2008.03.023
• Langrish, C. L., Chen, Y., Blumenschein, W. M., Mattson, J., Basham, B., Sedgwick, J. D., et al. (2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 201(2), 233-240. doi: 10.1084/jem.20041257
• Lavelle, E. C., Grant, G., Pusztai, A., Pfuller, U., & O’Hagan, D. T. (2000). Mucosal immunogenicity of plant lectins in mice. Immunology, 99(1), 30-37.
• Lebwohl, B., & Leffler, D. A. (2015). Exploring the Strange New World of Non-Celiac Gluten Sensitivity. Clin Gastroenterol Hepatol, 13(9), 1613-1615. doi: 10.1016/j.cgh.2015.03.012
• Lee, J., Kim, Y. S., Choi, D. H., Bang, M. S., Han, T. R., Joh, T. H., et al. (2004). Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J Biol Chem, 279(51), 53725-53735. doi: M407627200 [pii]
• 10.1074/jbc.M407627200
• Lenschow, D. J., Walunas, T. L., & Bluestone, J. A. (1996). CD28/B7 system of T cell costimulation. Annu Rev Immunol, 14, 233-258. doi: 10.1146/annurev.immunol.14.1.233
• Lesort, M., Tucholski, J., Miller, M. L., & Johnson, G. V. W. (2000). Tissue transglutaminase: a possible role in neurodegenerative diseases. [Review]. Progress in Neurobiology, 61(5), 439-463.
• Libby, P., Ridker, P. M., & Maseri, A. (2002). Inflammation and atherosclerosis. [Article]. Circulation, 105(9), 1135-1143. doi: 10.1161/hc0902.104353
• Liu, J., Zhu, P., Peng, J., Li, K., Du, J., Gu, J., et al. (2007). Identification of disease-associated proteins by proteomic approach in ankylosing spondylitis. Biochem Biophys Res Commun, 357(2), 531-536. doi: 10.1016/j.bbrc.2007.03.179
• Lochner, M., Peduto, L., Cherrier, M., Sawa, S., Langa, F., Varona, R., et al. (2008). In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORgamma t+ T cells. J Exp Med, 205(6), 1381-1393. doi: 10.1084/jem.20080034
• Lock, R. J., Tengah, D., Unsworth, D. J., Ward, J. J., & Wills, A. J. (2005). Ataxia, peripheral neuropathy, and anti-gliadin antibody. Guilt by association? [Article]. Journal of Neurology Neurosurgery and Psychiatry, 76(11), 1601-1603. doi: 10.1136/jnnp.2004.058487
• Macdonald, T. T., & Monteleone, G. (2005). Immunity, inflammation, and allergy in the gut. Science, 307(5717), 1920-1925. doi: 10.1126/science.1106442
• McFall-Ngai, M. (2007). Adaptive immunity: care for the community. Nature, 445(7124), 153. doi: 10.1038/445153a
• Mesquita Jr, D., Cruvinel, W. M., Camara, N. O., Kallas, E. G., & Andrade, L. E. (2009). Autoimmune diseases in the TH17 era. Braz J Med Biol Res, 42(6), 476-486.
• Mojibian, M., Chakir, H., Lefebvre, D. E., Crookshank, J. A., Sonier, B., Keely, E., et al. (2009). Diabetes-specific HLA-DR-restricted proinflammatory T-cell response to wheat polypeptides in tissue transglutaminase antibody-negative patients with type 1 diabetes. Diabetes, 58(8), 1789-1796. doi: 10.2337/db08-1579
• Molberg, O., McAdam, S. N., Korner, R., Quarsten, H., Kristiansen, C., Madsen, L., et al. (1998). Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. [Article]. Nature Medicine, 4(6), 713-717. doi: 10.1038/nm0698-713
• Monteleone, I., Sarra, M., Del Vecchio Blanco, G., Paoluzi, O. A., Franze, E., Fina, D., et al. (2010). Characterization of IL-17A-producing cells in celiac disease mucosa. J Immunol, 184(4), 2211-2218. doi: 10.4049/jimmunol.0901919
• Mowat, A. M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol, 3(4), 331-341. doi: 10.1038/nri1057
• Murphy, K., Travers, P., Walport, M., & Janeway, C. (2012). Janeway’s immunobiology (8th ed.). New York: Garland Science.
• Nagler-Anderson, C. (2000). Tolerance and immunity in the intestinal immune system. [Article]. Critical Reviews in Immunology, 20(2), 103-120.
• Nikulina, M., Habich, C., Flohe, S. B., Scott, F. W., & Kolb, H. (2004). Wheat gluten causes dendritic cell maturation and chemokine secretion. J Immunol, 173(3), 1925-1933.
• Nilsen, E. M., Gjertsen, H. A., Jensen, K., Brandtzaeg, P., & Lundin, K. E. (1996). Gluten activation of peripheral blood T cells induces a Th0-like cytokine pattern in both coeliac patients and controls. Clin Exp Immunol, 103(2), 295-303.
• Nishizawa, T., Inagawa, H., Oshima, H., Okutomi, T., Tsukioka, D., Iguchi, M., et al. (1992). Homeostasis as regulated by activated macrophage. I. Lipopolysaccharide (LPS) from wheat flour: isolation, purification and some biological activities. Chem Pharm Bull (Tokyo), 40(2), 479-483.
• Ohl, M. E., & Miller, S. I. (2001). Salmonella: a model for bacterial pathogenesis. Annu Rev Med, 52, 259-274. doi: 10.1146/annurev.med.52.1.259
• Ohnmacht, C., Marques, R., Presley, L., Sawa, S., Lochner, M., & Eberl, G. (2011). Intestinal microbiota, evolution of the immune system and the bad reputation of pro-inflammatory immunity. Cell Microbiol, 13(5), 653-659. doi: 10.1111/j.1462-5822.2011.01577.x
• Oldstone, M. B. A. (1987). MOLECULAR MIMICRY AND AUTOIMMUNE-DISEASE. Cell, 50(6), 819-820. doi: 10.1016/0092-8674(87)90507-1
• Oldstone, M. B. A. (1998). Molecular mimicry and immune-mediated diseases. [Review]. Faseb Journal, 12(13), 1255-1265.
• Palova-Jelinkova, L., Danova, K., Drasarova, H., Dvorak, M., Funda, D. P., Fundova, P., et al. (2013). Pepsin digest of wheat gliadin fraction increases production of IL-1beta via TLR4/MyD88/TRIF/MAPK/NF-kappaB signaling pathway and an NLRP3 inflammasome activation. PLoS One, 8(4), e62426. doi: 10.1371/journal.pone.0062426
• Palova-Jelinkova, L., Rozkova, D., Pecharova, B., Bartova, J., Sediva, A., Tlaskalova-Hogenova, H., et al. (2005). Gliadin fragments induce phenotypic and functional maturation of human dendritic cells. J Immunol, 175(10), 7038-7045.
• Paterson, B. M., Lammers, K. M., Arrieta, M. C., Fasano, A., & Meddings, J. B. (2007). The safety, tolerance, pharmacokinetic and pharmacodynamic effects of single doses of AT-1001 in coeliac disease subjects: a proof of concept study. Aliment Pharmacol Ther, 26(5), 757-766. doi: 10.1111/j.1365-2036.2007.03413.x
• Perera, P. Y., Mayadas, T. N., Takeuchi, O., Akira, S., Zaks-Zilberman, M., Goyert, S. M., et al. (2001). CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J Immunol, 166(1), 574-581.
• Plenge, R. M. (2010). Unlocking the pathogenesis of celiac disease. Nat Genet, 42(4), 281-282. doi: 10.1038/ng0410-281
• Pusztai, A., Ewen, S. W., Grant, G., Brown, D. S., Stewart, J. C., Peumans, W. J., et al. (1993). Antinutritive effects of wheat-germ agglutinin and other N-acetylglucosamine-specific lectins. Br J Nutr, 70(1), 313-321.
• Ramsden, C. E., Faurot, K. R., Carrera-Bastos, P., Cordain, L., De Lorgeril, M., & Sperling, L. S. (2009). Dietary fat quality and coronary heart disease prevention: a unified theory based on evolutionary, historical, global, and modern perspectives. Curr Treat Options Cardiovasc Med, 11(4), 289-301.
• Rashtak, S., Marietta, E. V., & Murray, J. A. (2009). Celiac sprue: a unique autoimmune disorder. [Review]. Expert Review of Clinical Immunology, 5(5), 593-604. doi: 10.1586/eci.09.30
• Reski, R. (Aug). Challenges to our current view on chloroplasts.
• Reynolds, J. M., Martinez, G. J., Nallaparaju, K. C., Chang, S. H., Wang, Y. H., & Dong, C. (2012). Cutting edge: regulation of intestinal inflammation and barrier function by IL-17C. J Immunol, 189(9), 4226-4230. doi: 10.4049/jimmunol.1103014
• Roth, E. B., Theander, E., Londos, E., Sandberg-Wollheim, M., Larsson, A., Sjoberg, K., et al. (2008). Pathogenesis of autoimmune diseases: Antibodies against transglutaminase, peptidylarginine deiminase and protein-bound citrulline in primary Sjogren’s syndrome, multiple sclerosis and Alzheimer’s disease. [Article]. Scandinavian Journal of Immunology, 67(6), 626-631. doi: 10.1111/j.1365-3083.2008.02115.x
• Ruggieri, M., Incorpora, G., Polizzi, A., Parano, E., Spina, M., & Pavone, P. (2008). Low prevalence of neurologic and psychiatric manifestations in children with gluten sensitivity. [Article]. Journal of Pediatrics, 152(2), 244-249. doi: 10.1016/j.jpeds.2007.06.042
• Sander, G. R., Cummins, A. G., Henshall, T., & Powell, B. C. (2005). Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett, 579(21), 4851-4855. doi: 10.1016/j.febslet.2005.07.066
• Sapone, A., Bai, J. C., Ciacci, C., Dolinsek, J., Green, P. H., Hadjivassiliou, M., et al. (2012). Spectrum of gluten-related disorders: consensus on new nomenclature and classification. BMC Med, 10, 13. doi: 10.1186/1741-7015-10-13
• Sapone, A., de Magistris, L., Pietzak, M., Clemente, M. G., Tripathi, A., Cucca, F., et al. (2006). Zonulin upregulation is associated with increased gut permeability in subjects with type 1 diabetes and their relatives. Diabetes, 55(5), 1443-1449. doi: 10.2337/db05-1593
• Scalapino, K. J., & Daikh, D. I. (2008). CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev, 223, 143-155. doi: 10.1111/j.1600-065X.2008.00639.x
• Seibold, F. (2005). Food-induced immune responses as origin of bowel disease? [Review]. Digestion, 71(4), 251-260. doi: 10.1159/000087051
• Shao, S., He, F., Yang, Y., Yuan, G., Zhang, M., & Yu, X. (2012). Th17 cells in type 1 diabetes. Cell Immunol, 280(1), 16-21. doi: 10.1016/j.cellimm.2012.11.001
• Shen, L., & Turner, J. R. (2006). Role of epithelial cells in initiation and propagation of intestinal inflammation. Eliminating the static: tight junction dynamics exposed. Am J Physiol Gastrointest Liver Physiol, 290(4), G577-582. doi: 10.1152/ajpgi.00439.2005
• Shor, D. B. A., Barzilai, O., Ram, M., Izhaky, D., Porat-Katz, B. S., Chapman, J., et al. Gluten Sensitivity in Multiple Sclerosis Experimental Myth or Clinical Truth?
• Singh, R. P., Hasan, S., Sharma, S., Nagra, S., Yamaguchi, D. T., Wong, D. T., et al. (2014). Th17 cells in inflammation and autoimmunity. Autoimmun Rev, 13(12), 1174-1181. doi: 10.1016/j.autrev.2014.08.019
• Smith, P. D., Smythies, L. E., Mosteller-Barnum, M., Sibley, D. A., Russell, M. W., Merger, M., et al. (2001). Intestinal macrophages lack CD14 and CD89 and consequently are down-regulated for LPS- and IgA-mediated activities. [Article]. Journal of Immunology, 167(5), 2651-2656.
• Smith, P. D., Smythies, L. E., Shen, R., Greenwell-Wild, T., Gliozzi, M., & Wahl, S. M. (2011). Intestinal macrophages and response to microbial encroachment. Mucosal Immunol, 4(1), 31-42. doi: 10.1038/mi.2010.66
• Smythies, L. E., Sellers, M., Clements, R. H., Mosteller-Barnum, M., Meng, G., Benjamin, W. H., et al. (2005). Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest, 115(1), 66-75. doi: 10.1172/JCI19229
• Sollid, L. M., & Jabri, B. (2013). Triggers and drivers of autoimmunity: lessons from coeliac disease. Nat Rev Immunol, 13(4), 294-302. doi: 10.1038/nri3407
• Somers, K., Stinissen, P., & Somers, V. Optimization of High-throughput Autoantibody Profiling for the Discovery of Novel Antigenic Targets in Rheumatoid Arthritis.
• Stenberg, P., Roth, B., & Wollheim, F. A. (2009). Peptidylarginine deiminases and the pathogenesis of rheumatoid arthritis: a reflection of the involvement of transglutaminase in coeliac disease. Eur J Intern Med, 20(8), 749-755. doi: S0953-6205(09)00165-4 [pii]
• 10.1016/j.ejim.2009.08.007
• Stenberg, R., Dahle, C., Lindberg, E., & Schollin, J. (2009). Increased Prevalence of Anti-gliadin Antibodies and Anti-tissue Transglutaminase Antibodies in Children With Cerebral Palsy. [Article]. Journal of Pediatric Gastroenterology and Nutrition, 49(4), 424-429.
• Stepniak, D., & Koning, F. (2006). Celiac disease–sandwiched between innate and adaptive immunity. Hum Immunol, 67(6), 460-468. doi: 10.1016/j.humimm.2006.03.011
• Symons, A., Budelsky, A. L., & Towne, J. E. (2012). Are Th17 cells in the gut pathogenic or protective? Mucosal Immunol, 5(1), 4-6. doi: 10.1038/mi.2011.51
• Takahashi, T., Kuniyasu, Y., Toda, M., Sakaguchi, N., Itoh, M., Iwata, M., et al. (1998). Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol, 10(12), 1969-1980.
• Taleb, S., Tedgui, A., & Mallat, Z. (2015). IL-17 and Th17 cells in atherosclerosis: subtle and contextual roles. Arterioscler Thromb Vasc Biol, 35(2), 258-264. doi: 10.1161/ATVBAHA.114.303567
• Tesmer, L. A., Lundy, S. K., Sarkar, S., & Fox, D. A. (2008). Th17 cells in human disease. [Review]. Immunological Reviews, 223, 87-113. doi: 10.1111/j.1600-065X.2008.00628.x
• Thomas, K. E., Sapone, A., Fasano, A., & Vogel, S. N. (2006). Gliadin stimulation of murine macrophage inflammatory gene expression and intestinal permeability are MyD88-dependent: role of the innate immune response in Celiac disease. J Immunol, 176(4), 2512-2521.
• Topolski, S. (2009). Understanding health from a complex systems perspective. [Article]. Journal of Evaluation in Clinical Practice, 15(4), 749-754. doi: 10.1111/j.1365-2753.2009.01227.x
• Tuckova, L., Flegelova, Z., Tlaskalova-Hogenova, H., & Zidek, Z. (2000). Activation of macrophages by food antigens: enhancing effect of gluten on nitric oxide and cytokine production. J Leukoc Biol, 67(3), 312-318.
• Tuckova, L., Novotna, J., Novak, P., Flegelova, Z., Kveton, T., Jelinkova, L., et al. (2002). Activation of macrophages by gliadin fragments: isolation and characterization of active peptide. J Leukoc Biol, 71(4), 625-631.
• Uhde, M., Ajamian, M., Caio, G., De Giorgio, R., Indart, A., Green, P. H., et al. (2016). Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. Gut. doi: 10.1136/gutjnl-2016-311964
• van Bruggen, N., & Ouyang, W. (2014). Th17 cells at the crossroads of autoimmunity, inflammation, and atherosclerosis. Immunity, 40(1), 10-12. doi: 10.1016/j.immuni.2013.12.006
• Vazquez-Roque, M. I., Camilleri, M., Smyrk, T., Murray, J. A., Marietta, E., O’Neill, J., et al. (2013). A Controlled Trial of Gluten-Free Diet in Patients With Irritable Bowel Syndrome-Diarrhea: Effects on Bowel Frequency and Intestinal Function. Gastroenterology, 144(5), 903-+. doi: 10.1053/j.gastro.2013.01.049
• Veldman, C., Nagel, A., & Hertl, M. (2006). Type I regulatory T cells in autoimmunity and inflammatory diseases. [Review]. International Archives of Allergy and Immunology, 140(2), 174-183. doi: 10.1159/000092576
• Vig, P. J. S., Wei, J., Shao, Q., Hebert, M. D., Subramony, S. H., & Sutton, L. T. (2007). Role of tissue transglutaminase type 2 in calbindin-D28k interaction with ataxin-1. [Article]. Neuroscience Letters, 420(1), 53-57. doi: 10.1016/j.neulet.2007.04.005
• Visser, J., Rozing, J., Sapone, A., Lammers, K., & Fasano, A. (2009). Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann N Y Acad Sci, 1165, 195-205. doi: 10.1111/j.1749-6632.2009.04037.x
• Vojdani, A. (2015). Lectins, agglutinins, and their roles in autoimmune reactivities. Altern Ther Health Med, 21 Suppl 1, 46-51.
• Vojdani, A., & Erde, J. (2006a). Regulatory T Cells, a Potent Immunoregulatory Target for CAM Researchers: Modulating Allergic and Infectious Disease Pathology (II). Evid Based Complement Alternat Med, 3(2), 209-215. doi: 10.1093/ecam/nel020
• Vojdani, A., & Erde, J. (2006b). Regulatory T Cells, a Potent Immunoregulatory Target for CAM Researchers: Modulating Tumor Immunity, Autoimmunity and Alloreactive Immunity (III). Evid Based Complement Alternat Med, 3(3), 309-316. doi: 10.1093/ecam/nel047
• Vojdani, A., & Erde, J. (2006c). Regulatory T cells, a potent immunoregulatory target for CAM researchers: the ultimate antagonist (I). Evid Based Complement Alternat Med, 3(1), 25-30. doi: 10.1093/ecam/nek022
• Vojdani, A., Kharrazian, D., & Mukherjee, P. S. (2014). The prevalence of antibodies against wheat and milk proteins in blood donors and their contribution to neuroimmune reactivities. Nutrients, 6(1), 15-36. doi: 10.3390/nu6010015
• Vojdani, A., O’Bryan, T., Green, J. A., McCandless, J., Woeller, K. N., Vojdani, E., et al. (2004). Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism. Nutr Neurosci, 7(3), 151-161. doi: 10.1080/10284150400004155
• Vojdani, A., O’Bryan, T., & Kellermann, G. H. (2008). The immunology of gluten sensitivity beyond the intestinal tract. [Editorial Material]. European Journal of Inflammation, 6(2), 49-57.
• Wahnschaffe, U., Schulzke, J.-D., Zeitz, M., & Ullrich, R. (2007). Predictors of clinical response to gluten-free diet in patients diagnosed with diarrhea-predominant irritable bowel syndrome. Clinical Gastroenterology and Hepatology, 5(7), 844-850. doi: 10.1016/j.cgh.2007.03.021
• Watts, T., Berti, I., Sapone, A., Gerarduzzi, T., Not, T., Zielke, R., et al. (2005). Role of the intestinal tight junction modulator zonulin in the pathogenesis of type I diabetes in BB diabetic-prone rats. Proc Natl Acad Sci U S A, 102(8), 2916-2921. doi: 10.1073/pnas.0500178102
• Weber, C. R., & Turner, J. R. (2007). Inflammatory bowel disease: is it really just another break in the wall? Gut, 56(1), 6-8. doi: 10.1136/gut.2006.104182
• Westall, F. C. (2007). Abnormal hormonal control of gut hydrolytic enzymes causes autoimmune attack on the CNS by production of immune-mimic and adjuvant molecules: A comprehensive explanation for the induction of multiple sclerosis. Med Hypotheses, 68(2), 364-369. doi: 10.1016/j.mehy.2006.06.051
• Williamson, E., Westrich, G. M., & Viney, J. L. (1999). Modulating dendritic cells to optimize mucosal immunization protocols. J Immunol, 163(7), 3668-3675.
• Wing, K., & Sakaguchi, S. (2010). Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat Immunol, 11(1), 7-13. doi: 10.1038/ni.1818
• Wucherpfennig, K. W., & Strominger, J. L. (1995). MOLECULAR MIMICRY IN T-CELL-MEDIATED AUTOIMMUNITY – VIRAL PEPTIDES ACTIVATE HUMAN T-CELL CLONES SPECIFIC FOR MYELIN BASIC-PROTEIN. [Article]. Cell, 80(5), 695-705. doi: 10.1016/0092-8674(95)90348-8
• Xu, H. Y., Barnes, G. T., Yang, Q., Tan, Q., Yang, D. S., Chou, C. J., et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. [Article]. Journal of Clinical Investigation, 112(12), 1821-1830. doi: 10.1172/jci200319451
• Yacyshyn, B., Meddings, J., Sadowski, D., & Bowen-Yacyshyn, M. B. (1996). Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability. Dig Dis Sci, 41(12), 2493-2498.
• Yamamoto, A., Lucas, J. J., & Hen, R. (2000). Reversal of neuropathology and motor dysfunction in a conditional model of Huntington’s disease. [Article]. Cell, 101(1), 57-66.
• Yamazaki, K., Murray, J. A., & Kita, H. (2008). Innate immunomodulatory effects of cereal grains through induction of IL-10. J Allergy Clin Immunol, 121(1), 172-178 e173. doi: 10.1016/j.jaci.2007.08.031
• Yu, Q. H., & Yang, Q. (2009). Diversity of tight junctions (TJs) between gastrointestinal epithelial cells and their function in maintaining the mucosal barrier. Cell Biol Int, 33(1), 78-82. doi: 10.1016/j.cellbi.2008.09.007
• Zeng, H., & Chi, H. Metabolic control of regulatory T cell development and function. Trends in Immunology, 36(1), 3-12. doi: 10.1016/j.it.2014.08.003
• Zhou, X., Bailey-Bucktrout, S. L., Jeker, L. T., Penaranda, C., Martinez-Llordella, M., Ashby, M., et al. (2009). Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol, 10(9), 1000-1007. doi: 10.1038/ni.1774

Related Articles