1. Home » Commentary » Commentary: Disputing Ferrari’s altitude training claims, part 2

Commentary: Disputing Ferrari’s altitude training claims, part 2

Editor’s note: The following is the second in a two-part series in which sports medicine physician Michael Puchowicz disputes claims made by Dr. Michele Ferrari in January that Lance Armstrong would have seen comparable benefits from altitude training without the use of EPO and other performance enhancing drugs. In part 1, Dr. Puchowicz detailed literature that disputed Ferrari’s claims that altitude training could produce five-to-10-percent gains in hemoglobin mass. Today, he details Ferrari’s claims regarding PED use.

When Dr. Michele Ferrari made the claim that Lance Armstrong could have won all seven of his Tour de France titles without doping, he based his argument on the assertion that altitude would produce an increase in hemoglobin (Hgb) mass on the order of five-to-10 percent, and that the effect of Armstrong’s doping would not exceed this same magnitude. In part 1 of this analysis, a closer look at the literature revealed that Ferrari misrepresented the data he cited. Rather than five-to-10-percent improvements, the data realistically suggests that at time points relevant to grand tour performance, the elevation in Hgb mass would be about one-to-five percent.

Part 2 of this analysis considers whether Dr Ferrari’s statements on the effect of doping are misleading as well.

Please note that the actual values for EPO dosages have been replaced with the qualitative terms “Sub Micro Dose,” “Micro Dose,” and “Standard Dose” so that this article does not provide specific dosing information. For the same reason, we have removed the author and title information for one source used in this analysis.

Ferrari stated that “EPO and auto-transfusions, always in the manner reported by teammates (micro-doses of EPO and one-to-two units of blood) correspond to an increase of (Hgb) mass by five-to-10 percent for an endurance athlete weighing 75kg, who has nine-to-10 liters of blood.” He did not cite any studies to support this side of his argument. Presumably, the doctor banned from the sport due to doping violations relied on his own expert opinion.

Regardless, if we take Armstrong’s admission that he used EPO, “but just a little,” at face value, then data suggest his EPO “micro-dose” regimen would likely increase his Hgb mass by about 10 percent (Ashenden 2011a). So, on EPO alone, the increase from doping is already at the high end of Ferrari’s five-to-10-percent range. As such, the EPO effect is well above the one-to-five-percent increase that would be expected from altitude. More importantly, the EPO effect could be sustained for the full three weeks of a grand tour. Also, an additional 3.8-percent increase per blood bag (see notes below) would be expected from blood transfusions. Together, the total doping effect would be a sustained 10-percent increase with as much as an 18-percent increase in Hgb mass for key stages of the Tour de France.

To visualize the difference between the effect of altitude and doping, we added simulated EPO and blood doping data (squares) to the altitude figure from Part 1. Although, some of the altitude data points (circles) taken at or immediately after altitude may be close, the gap quickly widens at time points relevant to a grand tour. For key stages, adding blood transfusions on top of EPO could reasonably produce an effect that would be more than three times the effect of altitude training.

When questioned about the discrepancy, Ferrari replied, “Regarding the study of Ashenden (2011a), the ‘micro-doses’ of EPO administered for a period of 12 weeks ranged from (‘Micro Dose’ to ‘Standard Dose’). Even the lowest dose is detectable in urine up to 16 hours after IV administration (#### 1990, fig X). Therefore, these ‘micro-doses’ can not be used by cyclists, who as we know can be tested from 6:00 a.m. to 11:00 p.m.”

Related Articles